Preface :
The minimum-path algorithm finds an optimal path connecting a starting vertex with each vertex in a directed graph. A more general problem deals with a connected undirected graph. We want to find an acyclic set of edges that connect all of the vertices in the graph with the smallest total weight. Let E be the set of edges in the graph and T be the acyclic subset of E. Because T is acyclic and connects (spans) all the vertices, it forms a tree called the minimum spanning tree. The concept has important applications. A network connects hubs in a system. The minimum spanning tree links all of the nodes in the system with the least amount of cable. There are a variety of minimum-spanning-tree algorithms. One is Prim's algorithm, which builds the tree vertex by vertex. At each stage, the algorithm adds a new vertex and an edge that connects the new vertex with the ones already in the tree.
Prim's Algorithm :
Prim's algorithm creates a minimum spanning tree for a weighted undirected graph that is connected. The mechanics are very similar to the Dijkstra minimum-path algorithm. The iterative process begins with any starting vertex and maintains two variables minSpanTreeSize and minSpanTreeWeight, which have initial value 0. Each step adds a new vertex to the spanning tree. The process terminates when all of the vertices added to the tree. Adding a vertex also involves adding the edge of minimal weight that connects the vertex to those already in the minimal spanning tree. The weight of the edge updates the variable minSpanTreeWeight.
Let us look at the algorithm for the graph in below figure with A selected as the first vertex in the spanning tree :
We implement Prim's algorithm by using a priority queue of MinInfo objects, much as we do in the Dijkstra minimum-path algorithm. An iterative step inserts an element into the priority queue when there is an edge e(v,w), v is a vertex already in the minimum spanning tree, w is a vertex not in the tree, and adding the edge provides a smaller weight that the weight from any previously discovered edge what will connect a vertex to the spanning tree. The endV field of a MinInfo object is w, and thepathWeight field is the weight of the edge. We also use the vertex color, data and parent reference properties :
color :
data :
parent :
The following details the setup for the algorithm and the iterative steps. We include a display of MinInfo objects in the priority queue and the status of the color and parentfields for each vertex.
Setup :
Step1 :
Step2 :
Step3 :
Step4 :
Note that, in Step3, vertex C appears twice in the priority queue. Initially, it enters the queue as a neighbor of A, in which edge (A,C) has weight 12. Once D is in the spanning tree, we look at its neighbors and find a better edge, (D,C), with weight 7. In this step, we pop MinInfo(C,7) and put C into the spanning tree (color it BLACK). In a larger example, a subsequent step may delete MinInfo(C,12) from the priority queue, but C would already be in the spanning tree (BLACK), so we would take no action, because we cannot connect C a second time with weight 12.
Implementing the minSpanTree() Method :
In the minSpanTree() method, we are interested in taking a graph as an argument and deriving both a minimum spanning tree and its total weight. We do this by using a signature with two graph references as arguments and in integer return value. The first argument is the original graph and the second argument is the minimum spanning tree that is created by the method. The return value is the total weight. The following is the implementation of method minSpanTree() :
- Running Time Analysis
Prim's algorithm is just a variation of Dijkstra's algorithm, so its running time is O(V + E log2 V).
Supplement :
* [ 資料結構 小學堂 ] 圖形結構 : 擴張樹
* [ 資料結構 小學堂 ] 圖形結構 : 擴張樹 - 求最小成本擴張樹 (Kruskal 演算法)
This is a blog to track what I had learned and share knowledge with all who can take advantage of them
標籤
- [ 英文學習 ]
- [ 計算機概論 ]
- [ 深入雲計算 ]
- [ 雜七雜八 ]
- [ Algorithm in Java ]
- [ Data Structures with Java ]
- [ IR Class ]
- [ Java 文章收集 ]
- [ Java 代碼範本 ]
- [ Java 套件 ]
- [ JVM 應用 ]
- [ LFD Note ]
- [ MangoDB ]
- [ Math CC ]
- [ MongoDB ]
- [ MySQL 小學堂 ]
- [ Python 考題 ]
- [ Python 常見問題 ]
- [ Python 範例代碼 ]
- [心得扎記]
- [網路教學]
- [C 常見考題]
- [C 範例代碼]
- [C/C++ 範例代碼]
- [Intro Alg]
- [Java 代碼範本]
- [Java 套件]
- [Linux 小技巧]
- [Linux 小學堂]
- [Linux 命令]
- [ML In Action]
- [ML]
- [MLP]
- [Postgres]
- [Python 學習筆記]
- [Quick Python]
- [Software Engineering]
- [The python tutorial]
- 工具收集
- 設計模式
- 資料結構
- ActiveMQ In Action
- AI
- Algorithm
- Android
- Ansible
- AWS
- Big Data 研究
- C/C++
- C++
- CCDH
- CI/CD
- Coursera
- Database
- DB
- Design Pattern
- Device Driver Programming
- Docker
- Docker 工具
- Docker Practice
- Eclipse
- English Writing
- ExtJS 3.x
- FP
- Fraud Prevention
- FreeBSD
- GCC
- Git
- Git Pro
- GNU
- Golang
- Gradle
- Groovy
- Hadoop
- Hadoop. Hadoop Ecosystem
- Java
- Java Framework
- Java UI
- JavaIDE
- JavaScript
- Jenkins
- JFreeChart
- Kaggle
- Kali/Metasploit
- Keras
- KVM
- Learn Spark
- LeetCode
- Linux
- Lucene
- Math
- ML
- ML Udemy
- Mockito
- MPI
- Nachos
- Network
- NLP
- node js
- OO
- OpenCL
- OpenMP
- OSC
- OSGi
- Pandas
- Perl
- PostgreSQL
- Py DS
- Python
- Python 自製工具
- Python Std Library
- Python tools
- QEMU
- R
- Real Python
- RIA
- RTC
- Ruby
- Ruby Packages
- Scala
- ScalaIA
- SQLAlchemy
- TensorFlow
- Tools
- UML
- Unix
- Verilog
- Vmware
- Windows 技巧
- wxPython
訂閱:
張貼留言 (Atom)
[Git 常見問題] error: The following untracked working tree files would be overwritten by merge
Source From Here 方案1: // x -----删除忽略文件已经对 git 来说不识别的文件 // d -----删除未被添加到 git 的路径中的文件 // f -----强制运行 # git clean -d -fx 方案2: 今天在服务器上 gi...
-
前言 : 為什麼程序管理這麼重要呢?這是因為: * 首先,本章一開始就談到的,我們在操作系統時的各項工作其實都是經過某個 PID 來達成的 (包括你的 bash 環境), 因此,能不能進行某項工作,就與該程序的權限有關了。 * 再來,如果您的 Linux 系統是個...
-
屬性 : 系統相關 - 檔案與目錄 語法 : du [參數] [檔案] 參數 | 功能 -a | 顯示目錄中個別檔案的大小 -b | 以bytes為單位顯示 -c | 顯示個別檔案大小與總和 -D | 顯示符號鏈結的來源檔大小 -h | Hum...
-
來源自 這裡 說明 : split 是 Perl 中非常有用的函式之一,它可以將一個字串分割並將之置於陣列中。若無特別的指定,該函式亦使用 RE 與 $_ 變數 語法 : * split /PATTERN/,EXPR,LIMIT * split /...
沒有留言:
張貼留言