翻譯自 這裡Preface :這個模組非常實用, 提供了一般數學運算的函數. 如果你需要對複數進行運算, 則可以使用另一個模組
cmath.
Number-theoretic and representation functions :接著來看看模組上提供的函數 :
- math.ceil(x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.
>>> math.ceil(1.2)
2
>>> math.ceil(1.0)
1
>>> math.ceil(-1.2)
-1 # Not -2
- math.copysign(x, y)
New in version 2.6.
Return x with the sign of y. On a platform that supports signed zeros, copysign(1.0, -0.0) returns -1.0.
- math.fabs(x)
Return the absolute value of x.
>>> math.fabs(-1.1)
1.1
>>> math.fabs(-1)
1.0 # 整數會轉浮點數
- math.factorial(x)
New in version 2.6.
Return x factorial. Raises ValueError if x is not integral or is negative.
>>> math.factorial(5)
120 # 5! = 120
- math.floor(x)
Return the floor of x as a float, the largest integer value less than or equal to x.
>>> math.floor(1.2)
1
>>> math.floor(-1.2)
-2
- math.fmod(x, y)
function fmod() is generally preferred when working with floats, while Python’s x % y is preferred when working with integers.
- math.frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m * 2**e exactly. If x is zero, returns (0.0, 0), otherwise0.5 <= abs(m) < 1. This is used to "pick apart" the internal representation of a float in a portable way.
>>> math.frexp(3)
(0.75, 2) # 3 = 0.75 * 2**2
- math.fsum(iterable)
New in version 2.6.
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums :
>>> math.fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0
>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.
- math.isinf(x)
New in version 2.6.
Check if the float x is positive or negative infinity.
- math.isnan(x)
New in version 2.6.
Check if the float x is a NaN (not a number). For more information on NaNs, see the IEEE 754 standards.
- math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().
- math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.
>>> math.modf(1.1)
(0.10000000000000009, 1.0)
>>> math.modf(-1.1)
(-0.10000000000000009, -1.0)
- math.trunc(x)
New in version 2.6.
Return the Real value x truncated to an Integral (usually a long integer). Uses the __trunc__ method.
>>> math.trunc(10.123)
10
>>> math.trunc(-10.456)
-10
Power and logarithmic functions :再來看看有關次方與
自然對數 e 的相關函數 :
- math.exp(x)
Return e**x.
- math.expm1(x)
New in version 2.7.
Return e**x - 1. For small floats x, the subtraction in exp(x) - 1 can result in a significant loss of precision; the expm1() function provides a way to compute this quantity to full precision :
>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05
- math.log(x[, base])
With one argument, return the natural logarithm of x (to base e).
With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).
Changed in version 2.3: base argument added.
>>> a = math.log(4) # log(base)
>>> b = math.log(16) # log(x), x=16
>>> b/a # log(x)/log(base) ; x=16, base=4
2.0
>>> math.log(16, 4) # x=16, base=4
2.0
- math.log1p(x)
New in version 2.6.
Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near zero.
- math.log10(x)
Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).
- math.pow(x, y)
Changed in version 2.6: The outcome of 1**nan and nan**0 was undefined.
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises ValueError.
- math.sqrt(x)
Return the square root of x.
Trigonometric functions :接著來看有關三角函數所提供的支援, 底下模組的函數都是
Inverse trigonometric functions :
- math.acos(x)
Return the arc cosine of x, in radians.
>>> (math.acos(1/math.sqrt(2))/math.pi) * 180 # math.acos(1/2^0.5) -> 45 degree -> 3.14 * (45/180) radians
45.00000000000001
- math.asin(x)
Return the arc sine of x, in radians.
- math.atan(x)
Return the arc tangent of x, in radians.
- math.atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.
底下為模組提供的三角函數 (
cosh, sinh 可以參考 Hyperbolic functions) :
- math.cos(x)
Return the cosine of x radians.
>>> math.cos(math.pi/4)
0.7071067811865476
>>> math.sqrt(2)/2
0.7071067811865476
- math.hypot(x, y)
Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point (x, y).
>>> math.hypot(1, 1)
1.4142135623730951
>>> math.sqrt(2)
1.4142135623730951
- math.sin(x)
Return the sine of x radians.
- math.tan(x)
Return the tangent of x radians.
Angular conversion :底下為角度單位的轉換 :
- math.degrees(x)
Converts angle x from radians to degrees.
>>> math.degrees(math.pi)
180.0
- math.radians(x)
Converts angle x from degrees to radians.
>>> math.radians(180)
3.141592653589793
Special functions :- math.erf(x)
New in version 2.7.
Return the error function at x.
- math.erfc(x)
New in version 2.7.
Return the complementary error function at x.
- math.gamma(x)
New in version 2.7.
Return the Gamma function at x.
- math.lgamma(x)
New in version 2.7.
Return the natural logarithm of the absolute value of the Gamma function at x.
Constants :這邊列出模組提供的常數 :
- math.pi
The mathematical constant π = 3.141592..., to available precision.
- math.e
The mathematical constant e = 2.718281..., to available precision.
This message was edited 40 times. Last update was at 10/04/2012 09:18:20
沒有留言:
張貼留言